A self-similar tiling generated by the minimal Pisot number

Taizo Sadahiro

February 17, 1998

Abstract

In [4] Thurston showed tilings of the plane by using Pisot numbers. In this paper we show a sufficient condition for two tiles to be adjacent in the case of the minimal Pisot number.

1 β -expansion

Let $\beta > 1$ be a real number. A representation in base β (or a β -representation) of a real number $x \geq 0$ is an infinite sequence $(x_i)_{k \geq i > -\infty}, x_i \geq 0$, such that

$$x = x_k \beta^k + x_{k-1} \beta^{k-1} + \cdots + x_1 \beta + x_0 + x_{-1} \beta^{-1} + x_{-2} \beta^{-2} + \cdots$$

for a certain integer $k \geq 0$. It is denoted by

$$x = x_k x_{k-1} \cdots x_1 x_0 . x_{-1} x_{-2} \cdots$$

A particular β -representation – called the β -expansion – can be computed by the 'greedy algorithm': Denote by [y] and $\{y\}$ the integer part and the fractional part of a number y. There exists $k \in \mathbb{Z}$ such that $\beta^k \leq x < \beta^{k+1}$. Let $x_k = [x/\beta^k]$, and $r_k = \{x/\beta^k\}$. Then for $k > i > -\infty$, put $x_i = [\beta r_{i+1}]$, and $r_i = [\beta r_{i+1}]$

 $\{\beta r_{i+1}\}$. We get an expansion $x = x_k \beta^k + x_{k-1} \beta^{k-1} + \cdots$. If k < 0 (x < 1), we put $x_0 = x_{-1} = \cdots = x_{k+1} = 0$. If an expansion ends in infinitely many zeros, it is said to be *finite*, and the ending zeros are omitted.

The digits x_i obtained by this algorithm are integers from the set $\mathcal{A} = \{0, \ldots, \beta-1\}$ if β is an integer, or the set $\mathcal{A} = \{0, \ldots, [\beta]\}$ if β is not an integer.

A particular β -representation of 1, $d(1,\beta)$ – called the carry sequence of β – is defined by means of the β -transformation of the unit interval:

$$T_{\beta}x = \beta x (mod 1), \quad x \in [0, 1].$$

$$d(1,\beta) = 0.t_{-1}t_{-2}..., t_{-k} = [\beta T_{\beta}^{k-1}1],$$

Proposition 1. ([4]) Let β be a real number greater than one, A β -representation of a number is the β -expansion if and only if the sequence of digits starting at any point is lexicographically less than the carry sequence $d(1,\beta)$.

If a real number x has finite β -expansion, $x = x_k \beta^k + x_{k-1} \beta^{k-1} + \dots + x_t \beta^t$, $(x_k, x_t \neq 0)$, then we denote $deg_{\beta}(x) = k$ and $ord_{\beta}(x) = t$. **Fin**(β) is the set of numbers who have finite β -expansion. **Fin**_m(β) is the set of numbers whose ord_{β} is greater than m.

2 Statement of the result

Definition 1. A Pisot number is an algebraic integer such that all its Galois conjugates are strictly inside the unit circle.

In the following of this paper, we regard β is a complex Pisot number of degere three which is a unit; i.e. β is a real root of a irreducible polynomial of the following form:

$$x^3 - ax^2 - bx - 1$$
, $a, b \in \mathbf{Z}$

which has only one real root greater than 1. For any real number $a \in \mathbf{F}in(\beta)$, let \mathbf{S}_a consist of all real numbers whose β -expansion agree with β -expansion of a after decimal point. Let α be a β 's conjugate over Q other than β itself, and ϕ be the conjugate map over Q which transforms β to α . We denote $\phi(x)$ by x' and for any set $S \subset Q(\beta)$, S' denotes $\phi(S)$. It is clear that

$$\beta^{-1}\mathbf{S}_0 = \mathbf{S}_0 \cup \mathbf{S}_{0,1}, \ \mathbf{S}_0 \cap \mathbf{S}_{0,1} = \emptyset.$$

Conjugating both side of the forms above

$$\alpha^{-1}\mathbf{S}_0' = \mathbf{S}_0' \cup \mathbf{S}_{0,1}'. \ \mathbf{S}_0' \cap \mathbf{S}_{0,1}' = \emptyset.$$

And in general,

$$\alpha^{-1}(\mathbf{Fin}_m(\beta))' = (\mathbf{Fin}_{m+1}(\beta))', \mathbf{S}'_a \cap \mathbf{S}'_b = \emptyset (\mathbf{S}_a \neq \mathbf{S}_b).$$

Figure 1: K_0 , $K_{0.1}$: $x^3 - x - 1$.

Let K_x be the closure of S'_x in C. From figure 2 $\{K_x|x\in$ $\mathbf{Fin}(\beta)$ seems to be a self-similar tiling of C with expansion constant α^{-1} . But threre is not any proof in [4]. In this paper we

Figure 2: K_0 , $K_{0.1}$, $K_{0.01}$: $x^3 - x - 1$.

prove some properties of $\{K_x|x\in \mathbf{Fin}(\beta)\}$ when β is the real root of x^3-x-1 .

Proposition 2. Let β be the real root of $x^3 - x - 1 = 0$. If $S_a \neq S_b$ then $\mu(K_a \cap K_b) = 0$, where μ denotes Lebesgue measure.

Proof. $d(1,\beta) = 0.(10000)^{\infty} = 0.100001000010 \cdots$. So from the proposition 1 if $x = x_k x_{k-1} \dots$ be the β -expansion of x and $x_i = 1$ then $x_{i-1}, x_{i-2}, x_{i-3}, x_{i-4} = 0$.

 $|\alpha|^{-2} = \beta$. It suffices to show when a = 0, b = 0.1. $\mathbf{S}_0 \cup \mathbf{S}_{0.1} = \beta^{-1}\mathbf{S}_0$, $\mathbf{S}_{0.1} = \beta^{-1} + \beta^{-4}\mathbf{S}_0$. Then $K_0 \cup K_{0.1} = \alpha^{-1}K_0$, $K_{0.1} = \alpha^{-1} + \alpha^4K_0$.

$$\mu(K_0 \cup K_{0.1}) = |\alpha^{-1}|^2 \mu(K_0) = \beta \mu(K_0).$$

$$\mu(K_{0.1}) = |\alpha^4|^2 \mu(K_0) = \beta^{-4} \mu(K_0).$$

$$\mu(K_0 \cap K_{0.1}) = \mu(K_0) + \mu(K_{0.1}) - \mu(K_0 \cup K_{0.1})$$
$$= (1 + \beta^{-4} - \beta)\mu(K_0)$$
$$= 0.$$

Theorem 1. Let β be the real root of the polynomial $x^3 - x - 1$. Let a and b be nonnegative reals less than 1, and their β -expansions be finite. If the following conditions are satisfied, then $K_a \cap K_b$ is an infinite set.

- For an integer $d \ge -5$, $a b = \beta^d$.
- $\deg_{\beta}(a) \le d + 4$, $\deg_{\beta}(b) \le d$

We prove the theorem by constructing the points on the intersection of two tiles.

3 Proof

Lemma 1. ([1], [2]) Let β be the real root of the polynomial $x^3 - x - 1$. If $x \in \mathbb{Z}[\beta]$ then β -expansion of x is finite. So for any two nonnegative numbers x and y that have finite β -expansion, β -expansion of $|x \pm y|$ is also finite.

Lemma 2. Let β be the real root of the polynomial $x^3 - x - 1$, and $\{a_n\} \subset \mathbf{Z}[\beta]$ be a sequence of nonnegative numbers. If $\operatorname{ord}_{\beta}(a_n) \to \infty$ then $|a'_n| \to 0$.

Proof. Suppose $h_n = \deg_{\beta}(a_n)$, $t_n = \operatorname{ord}_{\beta}(a_n)$.

$$a_n = c_{n,h_n}\beta^h + c_{n,h_n-1}\beta^{h_n-1} + \dots + c_{n,t_n}\beta^{t_n}.$$

$$|a'_{n}| \leq c_{n,h_{n}} |\alpha|^{h_{n}} + c_{n,h_{n}-1} |\alpha|^{h_{n}-1} + \dots + c_{n,t_{n}} |\alpha|^{t_{n}}$$

$$\leq [\beta] \frac{|\alpha|^{t_{n}} (1 - |\alpha|^{h_{n}-t_{n}+1})}{1 - |\alpha|}$$

$$\leq [\beta] \frac{|\alpha|^{t_{n}}}{1 - |\alpha|} = [\beta] \frac{|\alpha|^{ord_{\beta}(a_{n})}}{1 - |\alpha|}.$$

Lemma 3. $K_a \cap K_b \neq \emptyset$ if there exist two sequences $\{a_n\} \subset S_a$, $\{b_n\} \subset S_b$ such that $\{a'_n\}, \{b'_n\}$ converge in \mathbb{C} and $\operatorname{ord}_{\beta}(|a_n - b_n|) \to \infty$.

Proof. It follows from lemma 1 and 2.

Note that the converse of the lemma 3 is also true, but it is not necessary for our purpose here.

Proof. (proof of the Theorem) We use the relations, $\beta^3 = \beta + 1$ and $\beta^5 = \beta^4 + 1$. Let $a = 0.a_{-1}a_{-2} \cdots a_{-t}$, $b = 0.b_{-1}b_{-2} \cdots b_{-s}$ $t, s \in \mathbb{Z}$ be the β -expansions and $a - b = \beta^d$ for an integer d. We define sequences, $\{A_n\}$ and $\{B_n\}$ by the following procedure. $A_0 = a, B_0 = b$. When $A_n - B_n = \beta^{d_n}$, let $A_{n+1} = A_n$ $B_{n+1} = B_n + a$

 $\beta^{d_n+c_n}$ where $c_n=5, or 3$. When $B_n-A_n=\beta^{d_n}$, let $A_{n+1}=$ $A_n + \beta^{d_n+c_n}$ and $B_{n+1} = B_n$ where $c_n = 5, or3$. If we choose $c_n = 5$, then

$$|A_{n+1} - B_{n+1}| = \beta^{d_n+5} - |A_n - B_n|$$

$$= \beta^{d_n+5} - \beta^{d_n} = \beta^{d_n}(\beta^5 - 1)$$

$$= \beta^{d_n+4},$$

and hence

$$\operatorname{ord}(|A_{n+1} - B_{n+1}|) = d_n + 4 = \operatorname{ord}(|A_n - B_n|) + 4.$$

Similarly, if we choose $c_n = 3$, then

$$\operatorname{ord}(|A_{n+1} - B_{n+1}|) = d_n + 1 = \operatorname{ord}(|A_n - B_n|) + 1.$$

Repeating the procedure above, we can obtain sequences $\{A_n\}$ and $\{B_n\}$ such that $\operatorname{ord}_{\beta}(|A_n - B_n|) \to \infty$. But the condition that $A_{n+1} \in \mathbf{S}_a$ and $B_{n+1} \in \mathbf{S}_b$ may not hold in the process. So we add the following restriction. Let $M_n = \deg_{\beta}(\max\{A_n, B_n\})$ $d_n, \quad m_n = \deg_{\beta}(\min\{A_n, B_n\}) - d_n.$

$$c_n = \begin{cases} 5 \text{ or } 3 & m_n \le -2, d_n \ge -3 \\ 5 & m_n \le -2, -4 \ge d_n \ge -5 \\ 5 & -2 < m_n \le 0 \\ stop & other \end{cases}$$

Then $c_n - m_n \geq 5$, so β -expansions of A_{n+1} (resp. B_{n+1}) coinsides with A_n (resp. B_n) after decimal point. So $A_{n+1} \in \mathbf{S}_a$. If we choose $c_n = 5$, then $(M_{n+1}, m_{n+1}) = (1, M_n - 4)$, and if we choose $c_n = 3$, then $(M_{n+1}, m_{n+1}) = (2, M_n - 1)$. Let $A_0 =$ $a, B_0 = b, A_1 = a, B_1 = b + \beta^{d+5}, A_2 = a + \beta^{d+9}, B_2 = b + \beta^{d+5},$ Then $(M_2, m_2) = (1, -3)$. For such A_2 and B_2 , for n > 2 only m_n determines how many ways we can choose c_n and Figure 3 shows that infinitely many sequences can be obtained.

Let E_a be the set of all of the sequences that are obtained from the process above. Then E_a is an infinite set. We have to

Figure 3: (M_n, m_n) and c_n

show the set of limit points of elements of E_a is also an infinite set. Suppose if n elements in E_a converge to the same point. We can construct a point that is included in n tiles So only finitely many sequences can converge to the same point, and hence the set of all of the limit points of elements of E_a is also an infinite set.

Figure 4 shows a subset of $K_0 \cap (K_{0.1} \cup K_{0.01} \cup K_{0.001} \cup K_{0.0001} \cup K_{0.00001})$ obtained from the process above. It seems to be all of the intersection.

References

- [1] S.Akiyama. Pisot numbers and greedy algorithm. preprint.
- [2] C.Frougny, B.Solomyak. Finite beta-expansions. Ergod. Th. and Dynam. Sys. 12 (1992) 713-723
- [3] R.Kenyon. Inflationary tilings with a similarity structure. Comment. Math. Helv. 69 (1994), no.2, 169-198.

Figure 4: $K_0 \cap (K_{0.1} \cup K_{0.01} \cup K_{0.001} \cup K_{0.0001} \cup K_{0.00001})$.

[4] W.P.Thurston. Groups, Tilings and Finite state automata AMS Colloquim lectures, 1989.