2005.10.28 環境共生学部・居住環境学専攻 助教授・辻原万規彦

地域の気候 (その1・都市気候)

1. 気候のスケールと定義

気候 (climate): ある地域の長期間にわたる天候・気象の状態。

地球をとりまく大気の規則的な日変化,年変化の現象と,一時的,不規則な 現象との複合的な大気現象が時間的,一般的に一般化してもの。もっとも出 現確率の高い大気の総合状態で,かつ長い期間のものを指す。

天候 (weather): 天気より幾分長い期間 (数日から、2、3ヶ月くらいの期間) の大気の状態。 比較的短い期間における大気の総合状態。ある時点における大気の総合状態 である天気と、長年の気象から抽象された気候との中間概念で、天気の時系 列にあたる。

天気 (weather):ある時刻の大気の状態のこと。

ある時刻,またはある時間帯の気温,湿度,風,雲量,視程,降水などの気象要素の統合された状態のこと。

気象 (atmospheric Phenomena):大気中の諸現象のこと。

大気中でおこるさまざまな自然現象のこと。

→ 気象学 (meteorology)

表 気候のスケール (出典:参考文献[1], p.3)

気候	地域の水平的広がり	垂直的広がり	気候現象の例
大気候	200km∽40,000km	1m∽120km	季節風、東アジアの雨季
中気候	1km~200km	1m∽6km	盆地の気候,関東平野の風
小気候	10m∽10km	10cm∽1km	斜面の温暖帯,霜道
微気候	1cm∽100m	1cm∽10m	水田の気候、温室内の気候

この講義の中で、今後取り扱う「都市気候」は、上記の「小気候」にほぼ該当する。

2005, 10, 28

環境共生学部・居住環境学専攻 助教授・辻原万規彦

2.「都市気候」とは?

都市が建設され、そこで人間が生活するようになると、そこの気候が田園や森林であった当時 と比べて変化する。そして都市域では、郊外や周囲の田舎とは異なった気候が生じる。この都市 固有の気候を「都市気候」と呼ぶ。

都市気候の存在は、都市内部に等温層や逆転層をもたらし、都市内部から排出された大気汚染物質を封じ込める結果となり、都市の大気環境を著しく悪化させる原因となる。その主な原因は、人間の集中・活動による地表面での熱収支が変化することにある。これは、都市域が郊外地域に比較して気温が高くなる現象で、一般にヒートアイランドと呼ばれているものである。すなわち、都市域を中心として都市の気温が島状に分布することから名づけられた。

逆転層 • 等温層

通常, 気温は高度が増すに伴って減少するので, 上空ほど低温である。しかし, 高度とともに 気温が上昇することがあり, これが見られる気層を逆転層と呼ぶ。また, 気温が逆転するに至ら ず, 等温(鉛直方向に)であれば, 等温層と呼ばれる。

3. 都市気候の形成過程

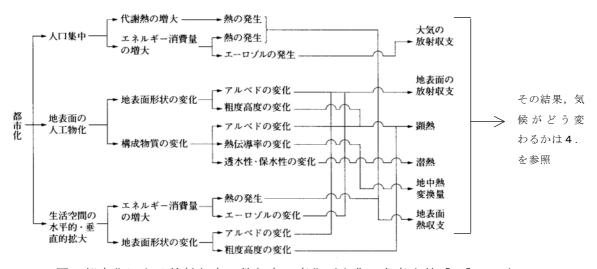


図 都市化による放射収支・熱収支の変化(出典:参考文献 [2], p.2)

1) エーロゾル

エーロゾル (aerosol) とは、気体 (分散媒) の中に、固体や液体の微粒子 (分散質) が分散 しているコロイド分散系を指す言葉であるが、一般には微粒子そのものもエーロゾロと呼ぶ。

2005, 10, 28

環境共生学部·居住環境学専攻

助教授・辻原万規彦

エーロゾルは、太陽からの放射を始めとする放射を散乱したり、吸収したりする効果のほかに、 曇粒子の凝結核となり、雲の光学的性質を変える効果も誘発する。

2) アルベド

アルベド (albedo) とは、ある面に入射した日射 (単位は放射東密度) に対する、反射された 日射の比率のこと。日射の反射率、あるいは日射の反射能とも言う。

例えば、地表面構成物質が、森林や土壌に比べてアルベドの大きい(白っぽい)コンクリートなどに変わると、太陽からの放射を反射しやすくなるので、地表面が吸収する熱は減少する。

3) 粗度

粗度(roughness)とは、地表面のあらさ程度を表す。ふつう粗度定数(z_0 、粗度パラメーターともいう)で表される。地面粗度の大きさによって、その上を吹く風速の鉛直分布や乱流が大きく変化する。

都市では、建物などの障害物の存在により都市の外側から流れ込む空気の流れが弱められると同時に、風の乱れも大きくなる。また、高層建築物にぶつかった上空の相対的に強い風が地表面付近に降りてくる結果、道路部分で異常に強い風(ビル風)が吹くなどの影響が見られる。

4) 顕熱

顕熱 (sensible heat) とは、物体の相変化や化学変化を伴わずに温度変化だけに消費される熱のこと。

5) 潜熱

潜熱(latent heat)とは、物体において、温度を変えずに、蒸発・凝縮・融解などの相変化だけに消費される熱のこと。水の場合、氷から水への融解熱、水から水蒸気への蒸発熱などがこれにあたる。

2005. 10. 28

環境共生学部·居住環境学専攻

助教授・辻原万規彦

4. 都市がつくる気候

表 都市の気候要素に与える影響 (+:増加ないし上昇, -:減少ないし下降)

(出典:参考文献[2], p.8, に加筆)

日射:総量に対して-,散乱日射に対して+

雲 : 雲量, 霧は+

降水:雷雨性降雨に対しては+

微雨に対しては+

都市化の段階で-

降雪に対しては-

→ 乾燥化

気温:年平均,最高・最低ともに+ →ヒートアイランド

湿度:相対湿度は- ←気温が上昇するため

絶対湿度は地表面レベルでは-,上空では+

風速:年平均,極値は- ←凸凹ができ,粗度が+になるため

局所的に極値は+

静穏は十

5. 都市大気の構造と都市気候

都市に特有の気候、例えば、ヒートアイランドなどは、都市の表面層のみに見られる現象ではない。都市上空を覆う大気は、ブランケットを被ったような状態で、簡単に消滅することはない。 このような都市を覆う大気を都市大気と言う。

一般風があるときには都市大気は風下に流され、都市大気の中は都市表面の建築物などの摩擦で複雑な流れを形成する。風下へ流された都市大気はプルーム(定常的な浮力源によって発生するジェット的運動)を形成し、風下側の郊外にはルーラル境界層ができる、都市大気の上層には対流性の雲が発生することがある。

無風状態では都市大気はドーム状になり、都心部を中心に非常に弱い対流が生ずる。暖気は上昇し、それを補償するために周辺から空気が集まる。全体として対流性の循環が形成され、これを都市循環という。また、郊外の空気は温度が低く、重いので都市部へ向かう郊外風となる。模式図では中心部の上昇流や郊外からの下層郊外風が明瞭な矢印で示されているが、ともに非常に弱い風で、通常の風速計では測定できない。

2005, 10, 28

環境共生学部・居住環境学専攻

助教授・辻原万規彦

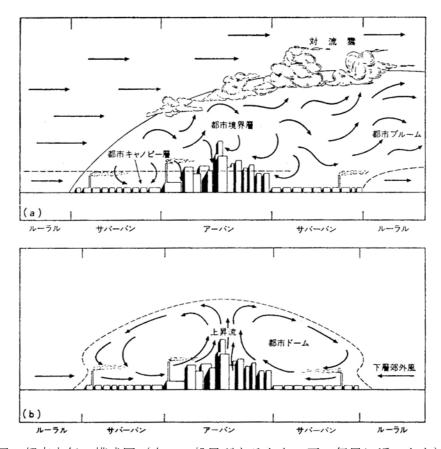


図 都市大気の模式図(上:一般風があるとき,下:無風に近いとき)

(出典:参考文献[2], p.17)

6. 都市の発展と都市気候の変化

世界的な大都市である、東京の都市気候は、次のように変化した。

1) 第1段階(1880(明治13)~1920(大正9)年)

「日最低気温が上昇し、相対湿度が低下する」のがもっとも顕著な段階で、都市気候が形成される初期的な時代。

2) 第2段階(1926(昭和元)~40(昭和15)年)

日最低気温は明らかな上昇を示し、日最高気温も上昇、したがって日平均気温も上昇を示し、 ヒートアイランドがもっとも顕著になる時代といえる。また微雨日数や霧日数は増加するのは、 凝結核の供給が都市内で大きくなった結果と考えられる。水蒸気庄はほとんど変化しないが、気 温が上昇するので相対湿度は低下する。

2005. 10. 28 環境共生学部・居住環境学専攻

助教授・辻原万規彦

3) 第3段階(1961(昭和36)年以降)

日最低気温は、小さい変動はあるが上昇を続ける。しかし日最高気温の経年変化はゆるやかな下降に転じる。これは、①都市域が拡大し、また都市活動がさらに盛んになるため、大気汚染質の拡散がひどくなり、「日がさ効果」が日中の温度上昇を妨げるため、②地域的なスケールの気温低下傾向のため、の2つの理由が考えられる。現在のところ、どちらかはわからない。一方、水平視程はよくなり、霧日数は減少し、相対湿度ばかりでなく、水蒸気庄(水蒸気量)も減小(少)し、年降水量は減少する。これは、都市の下水道が完備し、コンクリート・石などで地表面が覆われて地中に浸透する水分が少なくなるためで、都市の大気は乾燥化する時代である。近代化した都市は、この第3段楷の状態になるから、東京はその時代が1961年以降に始まったと考えられる。

表 東京における各都市気候要素の時代的変化(出典:参考文献[2], p. 406)

	第1段階	第2段階	第3段階
	1880-1920 年	1926-40 年	1961 年以降
年 平 均 日 最 高 気 温 年 平 均 日 平 均 気 温 年 平 均 日 最 低 気 温	± 0 ± 0 +	+ (変動小) + (変動小) ++ (変動小)	- (変動大) + (変動大) ++ (変動大)
年 降 水 量 年 微 雨 H 数 年 降 水 日 数	+ ± 0 0 (+)	± 0 + 	_ _ _ _ ± 0
水蒸気圧の年平均値 相対湿度の年平均値	± 0 (-) -	± 0 -	- (変動大)
視程 5 km以下の年間日数 視程10km以上の年間日数	欠 欠	欠 欠	++
年 霧 日 数	+	++	

-:ゆるやかな下降傾向、+:ゆるやかな上昇傾向、-:顕著な下降傾向、+:顕著な上昇傾向、 \pm 0:明らかな上昇・下降傾向なく、変動が大きい、0:明らかな上昇・下降傾向なく、変動は小さい、():または、を意味する、欠:欠測。

7. 何故、都市気候を学ぶのか?

都市にある密度以上に人々が集中して居住するようになると必然的に周辺環境に影響を持つことになる。それは、不要物を排出することで環境を悪化させる問題(「下流側」に対しての問題)とあわせて、都市へ水、エネルギー、物資を供給する部分(「上流側」)に対してもそこでの環境破壊をもたらす問題をあげることができる。

都市における人間活動によって排出される二酸化炭素は、いわゆる「温室効果ガス」の主役であり、これを大量に排出し続けることは、地球の温暖化を促進させる。その結果、冷房負荷が増

2005.10.28

環境共生学部·居住環境学専攻

助教授・辻原万規彦

大し, 更に二酸化炭素の排出が進むという悪循環を生み出す。

また,大気汚染や都市の砂漠化など,都市気候の形成によって,私たちの生活に悪影響を及ぼ している。

それに対して、問題の所在はどこなのか?どの程度問題なのか?私たちはいったいどのように 対策すればいいのか?を明らかにする必要がある。

- 8. 参考文献(〔〕内は、熊本県立大学附属図書館所蔵情報)(*印は辻原所蔵せず)
- [1] 『新建築学大系 8 自然環境』(新建築学大系編集委員会編, 彰国社, 1984 年 1 月, \(\neq 4, 700\)
 + 税, ISBN: 4-395-150008-X) [開架 2, 520.8||KE1||8D, 0000086787]
- [2] 『都市環境学事典』(吉野正敏・山下脩二編, 朝倉書店, 1998 年 10 月, ¥16,000+税, ISBN: 4-254-18001-2) [参考2,518.8||To 72,0000215322], [開架2,518.8||To 72,0000233012]
- [3] 『都市の風水土 都市環境学入門』(福岡義隆編著, 朝倉書店, 1995 年 4 月, ¥3,500+税, ISBN: 4-254-16332-0) [開架 2,519||F82,0000220148,0000221369,0000221370]
- [4]『大気圏の環境』(有田正光編著,東京電機大学出版局,2000年1月,¥2,800+税,ISBN:4-501-61760-8)[開架2,519.3||A 77,0000263277]
- [5]『気候学・気象学辞典』*(吉野正敏・浅井冨雄・河村武・設楽寛・新田尚・前島郁雄編著, 二宮書店,1985年10月,¥12,800+税(2005年10月現在品切れ),ISBN:4-8176-0064-0) [参考2,451,033||Ki 22,0000236451]
- [6]『新版 気象ハンドブック』*(朝倉正・関口理郎・新田尚編著,朝倉書店,1995年11月, ¥32,000+税,ISBN:4-254-16111-5)[参考2,451.036||Ki 58,0000249283,0000249283] →現在は、第3版が出ている。
 - →→『気象ハンドブック 第3版』(新田尚・住明正・伊藤朋之編, 朝倉書店, 2005 年 9月, ¥38,000+税, ISBN: 4-254-16116-6) [所蔵なし]
- [7]『わかりやすい気象の用語事典』(二宮洸三・山岸米次郎・新田尚編, オーム社, 1999年8月, ¥2,500+税, ISBN: 4274-02399-0)[参考2, 451.033||W 25, 0000253259]
- [8] 『CFD による建築・都市の環境設計工学』(村上周三,東京大学出版会,2000年9月,¥5,200 +税, ISBN: 4-13-062201-3) [開架2,519||Mu 43,0000245576]
- [9]『都市環境学』(都市環境学教材編集委員会編, 森北出版, 2003 年 5 月, ¥3, 200+税, ISBN: 4-927-55251-3) [開架 2, 518.8||To 72, 0000275609]
- [10] 『環境気候学』(吉野正敏·福岡義隆編, 東京大学出版会, 2003 年 9 月, ¥4,600+税, ISBN: 4-13-062710-4) [開架 2, 451.8||Y 92, 0000279235]
- [11] 『気象の教室 2 ローカル気象学』(浅井冨雄,東京大学出版会,1996年3月,¥3,500+

2005, 10, 28

環境共生学部・居住環境学専攻 助教授・辻原万規彦

税, ISBN: 4-13-064702-4) [開架2, 451.08||Ki 58||2, 0000218613]

[12] 『最新 気象の事典 第4版』*(和達清夫監修,東京堂出版,2001年4月,¥9,800+税, ISBN:4-490-10328-X)[参考2 v 451.033||Sa 22,0000287108]

9. 参考 URL

[1]配付資料のダウンロード

http://www.pu-kumamoto.ac.jp/~m-tsuji/kougi.html/chiiki.html/chiikikan.html

「2]環境省のホームページ

http://www.env.go.jp/index.html

[3] 国土交通省のホームページ

http://www.mlit.go.jp/

[4] 独立行政法人国立環境研究所 地球環境研究センターのホームページ http://www-cger.nies.go.jp/index-j.html

- [5] 独立行政法人国立環境研究所 地球環境研究センターの一ノ瀬俊明先生のホームページ http://www-cger.nies.go.jp/ichinose/
- [6]信州大学教育学部理科教育研究室(榊原研究室)のホームページ http://rika.shinshu-u.ac.jp/sakaki/sakaki.htm
- [7] 気候影響・利用研究会のホームページ http://wwwsoc.nii.ac.jp/jsgcia/index.html
- [8] 東北大学大学院環境科学研究科環境科学専攻齋藤研究室のホームページ http://www.sol.mech.tohoku.ac.jp/index-j.html
- [9] 日本工業大学工学部建築学科成田研究室のホームページ http://leo.nit.ac.jp/~narita/
- [10] 日本ヒートアイランド学会のホームページ http://www.heat-island.jp/

2005, 10, 28

環境共生学部·居住環境学専攻 助教授・辻原万規彦

地球温暖化を防ぐ国際的な取り組みが、IIOOII年から始まる。ゆっくり進む 気検変動は身近な問題としてとらえにくいが、このまま放置すると日本は百年後、 困熱帯になるというである。郊外に比べ気温が高くなりやすい都市部では、 その前兆ともいえる動植物界の変化が起き始めている。

病原体媒介も

東京・渋谷の代々木公園。 程度の路い夏の皮、豆大なヒ ルのような生物が出現する。 地をはう長さは一げを超え る。目撃した学生(23)は「ひ もが落ちていると思った。よ く見るとスラスラとして、気 味思くなった」と話す。

 $\widehat{\Box}$

報日

2001年(平成13年)11月25日

用用

新

遊

炎星

[第三種郵便物間可]

この生物の名はオイミスジ コウガイピル。実験によく使 われるプラナリアという生物 の仲間だ。幅七一八。のきと めん状で、黄色い体に三本の 黒い 防機様がある。 体を切っ ても、それぞれが別々の個体 になるまど再生力が強い。

越冬の条件整う

大学教授は「原産地は東南ア ある。 ジア。植木などについて日本 に入り込んだようだ」と解説 する。率ければ生息できない が、環境省の調査によると、

幅は平均より大きく、南日本 くなると予想されている。

部は亜熱帯のようになり、百一た。 年後の房総半島以西の沿岸に は、現在の南西諸島にみられてプラスかマイナスか、判断 る車熱帯の植生が広がる。そは難しい。ただ、海水の膨張 のころ北海道では、田家符林 や岩様の氷が容け、毎百かれ がほぼ門腋する。

冬の気温上昇で東南アジアの 命名者でプラナリアの生態 東南アジア窪の生物が、東京 が、本州に出現。マラリアは 防の増強など港や海岸線の改 に辞しい川勝正治・元藤女子 で越冬できる条件が整いつつ 世界で約三億人が極楽してい 月工事に十一兆五千億円がか るといわれ、日本も将来そのかるとの試算もある。また、 危険にさらされる。

世界の研究者ら約三千人で 横面上昇で打撃

協権する、国連の民族教物に 海大道も上昇する。 単年の 国内の平均気温は過去百年間 関する政府間パネル(IPO クラゲが日本近海で観冬でき で、温暖化がりたらすその変 に約一度上昇。アスファルト ひ) の予測によると、1110 る。ミスクラゲやカプトクラ 化は、大きなリスク。米国を除 の蓄熱効果や治臓房の排熱な(O年に地球の気温は一九九〇)ゲが勢力を破めると、イワシ どでヒートアイランド化する。年と比べ平均で一・四一五・のえさを懐限りして、沿岸地 防止の京都議定書は、それを

農業にも影響を及ぼす。東 海地方より西では、高温で稲 が表りにくくはるなどの衛手 が起きる。西日本の幅作シー ズンは冬にずれ込み、風物詩 も根拠わりするだろう。逆に、 で約四度、北日本では五度高東海以東では生産量が増加す る。北海道で最大五〇%、東 そんな将来の日本の自然 北で一〇%程度増えそう。日 を、環境省の作業チームが予 本全体では、現在の米の生産 関した。五十年後に九州の南 量を何とか維持できる見込み

> こうした変化が日本にとっ -ベナベダ上昇することは、

海面が一が高くなると、日 昆虫が日本に住み着く。熱帯 本の臨海部で東京都の面積よ 病のマラリアやデング熱など り広い二千三百三十九平方は の預別体を媒介するコガタハ、がが水没し、四百十万人が被 マダラカやネッタインマカ 断を受ける可能性がある。 環 冷房などによって電力需要が 五百万*57 (一般家庭百六十 万世形分) 増加するという。

> 生態系は人類生存の味盤 く先進各国が合意した温暖化

unday Nikke

2005, 10, 28

環境共生学部·居住環境学専攻

助教授・辻原万規彦

[スライドリスト] 19世紀末から20世紀初頭のヨーロッパの近代建築

- ・サグラダファミリア(アントニオ・ガウディ,スペイン・バルセロナ,1883-1926年?)
- ・カサ・ミラ (アントニオ・ガウディ,スペイン・バルセロナ,1883-1926年)
- ・カサ・パトリョ (アントニオ・ガウディ,スペイン・バルセロナ,1904-1906年)
- ・グエル公園(アントニオ・ガウディ,スペイン・バルセロナ,1914年)
- ・エッフエル塔(ギュスターヴ・エッフェル,フランス・パリ,1887-1889年)
- ・メトロの入口 (エクトール・ギマール, フランス・パリ, 1899-1900年)
- ・カステル・ベランジェ(集合住宅)の門扉(エクトール・ギマール,フランス・パリ,1898年)
- ・ゼツェッション館(ヨーゼフ・マリア・オルブリッヒ,オーストリア・ウィーン,1897-1898 年)
- ・カースルプラッツ駅 (オットー・ワーグナー,オーストリア・ウィーン,1898年)
- ・マジョリカハウス (オットー・ワーグナー,オーストリア・ウィーン,1899年)
- ・ウィーン郵便貯金局(オットー・ワーグナー,オーストリア・ウィーン,1906年)
- ・サボォア邸 (ル・コルビジェ,パリ近郊ポワシー,1931年)
- ・バウハウス校舎(ワルター・グロピウス,ドイツ・バウハウス 1925-1926年)
- ・マイスター・ハウス (ワルター・グロピウス, 1925-1926年)
- 注) 1つの建築物に数枚のスライドがある場合もある。