2001.11.26

環境共生学部・居住環境学専攻 講師・辻原万規彦

# 地域の空気

# 1.都市の大気汚染

#### 1.1 世界の大気汚染

1952年12月にロンドンで,いわゆる「ロンドンスモッグ」事件が起きた。当時ロンドンは移動性高気圧に覆われ,前線には逆転層が発生した。このような状況では大気の対流が起こりにくく,そのうえ当時の気象状況は無風で,濃霧とともに各家庭から出る石炭暖房によるばい煙と硫黄酸化物が地表に停滞(これをスモッグ(煙(smoke)と霧(fog)の合成語。)とよぶ。)した。この極度に汚染された大気により,呼吸器や心臓疾患の患者が急速に増え,死亡率も目立って上昇した。このときの死者は約4,000人と報告されている。

このようなロンドン型の大気汚染による災害は,1930年12月にベルギーのミューズで,1948年10月にアメリカのドノラでも起こっていた。これらの都市は,共に渓谷地に立地し,多くの工場を抱えており,災害はロンドン事件と同様な気象条件で発生している。その原因は石炭燃焼によるばい煙と,SO。や硫酸ミストなどとの複合大気汚染と考えられる。

ばい煙が健康被害をもたらすことが明らかにされ,1975年頃から各工場で燃焼装置の改良や集塵 蓑置の設置などの対応がなされるようになった。また,燃料は石炭から燃焼効率が良く,ライン化の 容易な石油へと移行したこともあって,ぱい煙を伴う黒いスモッグから硫黄酸化物を中心とした白い スモッグへと変化してきた。

一方,ロサンゼルスでは,黒いスモッグや白いスモッグとはまったく性格の異なる,いわゆる光化学スモッグが1940年代中頃から問題になっており,ロサンゼルス型大気汚染といわれている。ロサンゼルスの大気汚染の原因物質は,主に自動車から排出される窒素酸化物と炭化水素が強い日射のもとで光化学反応を起こして生成された光化学オキシダントである。

光化学オキシダントは,一次汚染物質である窒素酸化物や炭化水素が太陽放射の紫外線を吸収して 光化学反応を起こして生成されたオゾンを中心とした酸化性物質の総称で,二次汚染物質である。光 化学オキシダントは,目・鼻・のどの粘膜を刺激し,涙を誘発したり呼吸困難を引き起こしたりする。 また植物への影響も大きく,1970年にはロサンゼルスの農作物が大被害を受けて,収量が30%も減 少したといわれている。

表 ロンドン型スモッグとロサンゼルス型スモッグの比較(出典:参考文献4))

|                | ロンドン型             | ロサンゼルス型                               |  |
|----------------|-------------------|---------------------------------------|--|
| 発生時の気温,湿度      | - 1 ~ 4 ,85%以上(霧) | 24~320C,70%以下                         |  |
| 最も発生しやすい月 , 時刻 | 12月,1月,早朝         | 8月,9月,日中                              |  |
| スモッグ最盛時の視程     | 0.1km以下           | 0.8~1.6km以下                           |  |
| ぉもな使用燃料        | 石炭および石油           | 石油                                    |  |
| 生成反応と化学作用      | 熱反応,還元的           | 光化学反応,熱反応,酸化的                         |  |
| おもな汚染物質        | SOx , CO , ばい塵    | $SOx$ , $O_3$ , アクロレイン , $PAN$ , $CO$ |  |
| 人体に対する影響       | 気管支 , 呼吸器系障害      | 目などの刺激,呼吸器障害                          |  |

2001.11.26

環境共生学部・居住環境学専攻

講師・辻原万規彦

### 1.2 日本の大気汚染

# (1)初期の大気汚染

- ・薪を燃やした「烟-煙(けぶり)」
- ・製塩業のけぶり
- ・大仏造営
- ・銅精錬などによる大気汚染(四国別子銅山,足尾銅山,日立銅山など)
- ・江戸時代の石炭燃焼

### (2) 明治維新の工業化から太平洋戦争終結までの大気汚染

- 1)局所的大気汚染紛争
- ・銅鉱山精錬排ガスによる農林業と鉱業の紛争(四阪島(別子銅山),足尾銅山,日立銅山)
- ・塩化水素大気放出に起因する農民の苦情(味の素・神奈川県逗子)
- ・セメント工業のダスト飛散(浅野セメント・東京)
- ・火薬製造工場の排ガス(アームストロング社・神奈川県平塚郡) など

# 2) 広域大気汚染問題

- ・阪神工業地帯,京浜工業地帯,北九州工業地帯の上空を覆うばい煙
- ・燃焼管理の必要性からボイラー技士の養成
- ・戦争激化による大気汚染の激化
- ・大正11(1922)年の大阪市立衛生試験所の広域大気汚染調査

#### (3)第二次世界大戦後から環境危機までの大気汚染

- 1)大気汚染問題の再燃
- ・戦後の工業の急速な復興と降下煤塵の増加
- ・公害防止条例の制定(昭和24年東京都,昭和25年大阪府,昭和26年神奈川県,昭和30年福岡県)

# 2) 『煤煙の排出の規制等に関する法律』の成立(昭和37年5月)

煤煙排出規制地域と規制対象施設を政令で指定し、地域毎に規制基準を厚生大臣・通産大臣が定めて順守を義務ずけ、都道府県知事がこの基準で取締まり、異体的規制方法として新設、改造の規制対象施設届出制度を定め、事故と緊急時措置を規定し大気汚染紛争への都道府県知事による和解仲介制度を定めて煤煙発生施設整備助成措置を規定。

『この法律は,工場及び事業場における事業活動に伴って発生するばい煙の処理を適切にする等により,大気の汚染による公衆衛生上の危害を防止するとともに,生活環境の保全と産業の健全な発展との調和を図り,かっ,大気の汚染に関する和解の仲介の制度を設けることにより,その解決に資することを目的とする。』(第1章総則第1条)

### 3)公害対策基本法,大気汚染防止法の成立

・高度経済成長による大気汚染状況の加速

2001.11.26

環境共生学部・居住環境学専攻 講師・辻原万規彦

・『公害対策基本法』の公布(昭和42年)

国民の健康を保護し,環境保全を図るため好ましいとされる『環境基準』を第9条に規定。

・『大気汚染防止法』の公布(昭和43年)

自動車排ガス規制を実現して硫黄酸化物排出規制に新たに着地濃度を一定以下に抑えることを目的とする煙突1本毎の単位時間あたりの硫黄酸化物排出量規制を実行。

・大気汚染地域の拡大(四日市問題など)

# (4)環境危機以降における大気汚染

- ・環境危機の勃発(昭和45年,マスコミが公害問題を大きく取り上げる)
- ・光化学スモッグの発生
- ·昭和45 (1970)年11月,第64回国会『公害国会』開催
- ・昭和46(1971)年7月,環境庁を創設(大気保全 企画課,大気規制課,特殊公害課,自動車公害課)
- ・環境庁と大気保全対策の推進
- ・地方自治体,通産省・産業界の環境危機対応
- ・大気汚染研究の推進

# 2. 大気汚染物質とその発生源

# 大気汚染物質

発生源から直接排出されるもの(1次汚染物質。SO2, CO, SPMなど。) 大気中で集合・反応の結果生成されるもの(2次汚染物質。Ox, NO3など。)

# 排出の形態

固定発生源(工場や発電所のように場所が動かないもの) 移動発生源(自動車,船舶,航空機のように移動しながら排出するもの)

### 2.1 硫黄酸化物

燃料中の硫黄が,燃焼の結果酸化物となって排出される。また,工業原料が硫黄を含む場合も同様であり,大部分が $SO_2$ として排出される。地球上におけるSOx発生量のうち,人為的発生量の約68%が石炭燃焼,約13%が重油燃焼による。

# ・SOxの排出規制

K 値規制:排出高度に対応した係数K によって,施設ごとに排出基準を設定。低い煙突ほど排出限度は小さくなる。

総量規制:個別の発生源規制のみでは環境基準を守れない地域に適用。地域全体の排出総量 を定め,それを各発生源に配分。

2001.11.26

環境共生学部・居住環境学専攻 講師・辻原万規彦

### ・SOxの削減技術

燃料から硫黄分を除く燃料脱硫装置,燃焼後に硫黄分を除く排煙脱硫装置の設置が有効。

### 2.2 窒素酸化物

燃焼など高温の条件下で,空気中の窒素と酸素が結びついてNOxとなり,燃料中の窒素からも発生する。したがって,工場関係だけでなく,自動車や暖房,厨房,タバコなどいたるところに発生源があるが,東京では発生量の70%以上が自動車由来とされる。排出時のNOxは大部分がNOで,これが大気中で酸化されてNO。になる。

#### ・NOxの規制

固定発生源に対する排出規制: 1973年にはじまり, その後5次にわたり強化。特に発生源が集中 する地域については,総量規制制度を導入(1982年に東京都特別 区地域,横浜市等地域,大阪市等地域の3地域が指定。)。

自動車の排ガス対策:自動車単体の排出規制が1973年にはじまり,順次強化。

# ・NOxの削減技術

燃焼技術向上と、燃焼後の排煙脱硝装置の設置。

# 2.3 浮遊粒子状物質

大気中にある粒子は降下ばい塵と浮遊粉塵に大別され,後者のうち10μm以下の微粒子をSPM (suspended particle matter)という。拉径が小さいほど浮遊時間が長く,肺の奥深く進入するため,環境基準はSPMについて定められている。

SPMは燃焼の際の灰やすす,自動車のタイヤ,ブレーキ,アスファルトの摩耗など,発生源も粒子の組成も多岐にわたる。また,大気中で水蒸気や化学物質が擬集・化合して生成される2次汚染物質も多く,発生源が多様であることが対策を困難にしている。

### SPMの規制

燃焼に由来するばい塵:発生施設の規模と種類に応じた排出基準あり。

アスベスト: 1989年に特定粉塵に指定し,発生施設の届出制,改善命令,監視測定などの制度を 設けた。

道路粉塵:1990年以降は法規制により一部地域を除いてスパイクタイヤの使用不可。

### ・ばい塵対策

燃焼管理が最も重要。排煙集塵装置の設置。

# 2.4 一酸化炭素

炭素を含む燃料が不完全燃炊すると、COが発生する。都市におけるおもな発生源は自動車である。 ほかの物質との反応性は高くないが、それ自体人間にとって有害であるため、自動車交通の多い都市

2001.11.26

環境共生学部・居住環境学専攻

講師・辻原万規彦

では重要な汚染物質である。しかし,自動車そのものの燃焼性能の改善により,わが国では環境基準を大きく下回るレベルを保っている。

### 2.5 オキシダント

 $NO_2$ とHCが共存する大気中で,太陽光により多くの物質が関与した複雑な反応が生じ,オゾン  $(O_3)$  やパーオキシアセチルナイトレートなどの強酸化性物質が生成される。これら酸化性物質を総赦してOxという。日本では $O_3$ がOxの90%前後を占める。

Oxは2次汚染物質であるため発生源が特定できず,SPMと同様に直接的対策が難しいが,影響は 急激で激甚である。

## ·Ox削減対策

事前に予報して被害の発生を防ぐ事が中心。

各自治体は気象観測に基づく予報体制を敷き,状況に応じて注意報や警報などを発令するとともに,協力工場には排出量削減を,一般市民には自動車使用の自粛などを要請。

Oxの発生を防ぐには,原因物質であるNOxやHCの排出を削減する必要あり。

# 2.6 炭化水素

HCの発生源としては,生物学的な発酵や腐敗,自動車排気中の不完全燃焼生成物,ガソリンスタンドなど石油製品の漏れ,有機溶剤その他からの蒸発などがある。HC自体の毒性は低い。

# ·HC削減対策

ほかの汚染物質に比べて技術的に困難が多く,効果的な方法が見出されていない。 固定発生源や廃棄物処理施設からのHC排出量を少しでも削減するため,自治体などに対して排出 抑制対策の推進を要請している段階。

### 3. 大気汚染に係る環境基準

環境省の告示では,次のような基準を定めている。

表 大気汚染に係る環境基準

| 物質                 | 環境上の条件(設定年月日等)     | 測 定 方 法         |
|--------------------|--------------------|-----------------|
| 二酸化硫黄              | 1時間値の1日平均値が0.04ppm |                 |
| (SO <sub>2</sub> ) | 以下であり,かつ,1時間値が     | 溶液導電率法又は紫外線蛍光法  |
|                    | 0.1ppm以下であること。     |                 |
|                    | (48.5.16告示)        |                 |
| 一酸化炭素              | 1時間値の1日平均値が10ppm   |                 |
| (CO)               | 以下であり,かつ,1時間値の8時   | 非分散型赤外分析計を用いる方法 |

環境共生学部・居住環境学専攻

| 講師 | _ | <b>2</b> + | 古七  | ±日立 | = |
|----|---|------------|-----|-----|---|
| 再叫 | • | Щ.         | ボノノ | 戏儿  | : |

|                     | 間平均値が20ppm以下であること。      |                   |
|---------------------|-------------------------|-------------------|
|                     | (48.5.8告示)              |                   |
| 浮遊粒子状物質             | 1時間値の1日平均値が             | 濾過捕集による重量濃度測定方法   |
| (SPM)               | 0.10mg/m³以下であり,かつ,      | 又はこの方法によって測定された重量 |
|                     | 1 時間値が0.20mg/m³以下であること。 | 濃度と直線的な関係を有する量が得ら |
|                     | (48.5.8告示)              | れる光散乱法,圧電天びん法若しくは |
|                     |                         | ベータ線吸収法           |
| 二酸化窒素               | 1時間値の1日平均値が0.04ppm      | ザルツマン試薬を用いる吸光光度法  |
| ( NO <sub>2</sub> ) | から0.06ppmまでのゾーン内又は      | 又はオゾンを用いる化学発光法    |
|                     | それ以下であること。(53.7.11告示)   |                   |
| 光化学オキシ              | 1 時間値が0.06ppm以下であること。   | 中性ヨウ化カリウム溶液を用いる吸光 |
| ダント                 | (48.5.8告示)              | 光度法若しくは電量法,紫外線吸収法 |
| (Ox)                |                         | 又はエチレンを用いる化学発光法   |

# 備考

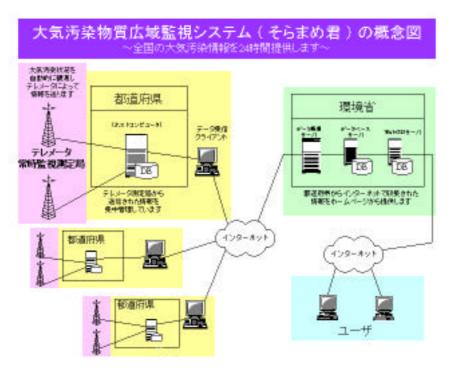
- 1.環境基準は,工業専用地域,車道その他一般公衆が通常生活していない地域または場所については,適用しない。
- 2. 浮遊粒子状物質とは大気中に浮遊する粒子状物質であってその粒径が10 μ m以下のものをいう。
- 3.二酸化窒素について,1時間値の1日平均値が0.04ppmから0.06ppmまでのゾーン内にある地域にあっては,原則としてこのゾーン内において現状程度の水準を維持し,又はこれを大きく上回ることとならないよう努めるものとする。
- 4. 光化学オキシダントとは,オゾン,パーオキシアセチルナイトレートその他の光化学反応により 生成される酸化性物質(中性ヨウ化カリウム溶液からヨウ素を遊離するものに限り,二酸化窒素 を除く。)をいう。

#### 単位について

ppm:容量比や重量比を表す単位で,1ppmとは,空気1m³中に物質が1cm³含まれる場合をいう。 ppmは,「part per million」の略称で100万分の1のことをいう。

 $mg/m^3$ : 重量濃度を表す単位で ,  $1 mg/m^3$ とは , 空気  $1 m^3$ 中に物質が 1 mg含まれる場合をいう。

# 4. 大気汚染物質排出量の監視


大気汚染の状況を監視するために,大気汚染防止法第22条に基づき,都道府県などによって1,600以上もの大気汚染常時監視測定局が設置され,大気汚染状況を常時監視(24時間測定)している。(第4回目「地域の気候(その2・気象の観測)」の16ページを参照。環境省大気汚染物質広域監視システム(そらまめ君)のホームページ(http://w-soramame.nies.go.jp/)も参照のこと。)

2001.11.26

環境共生学部・居住環境学専攻

講師・辻原万規彦

これらの測定結果は,環境省環境管理局のホームページ(http://www.env.go.jp/air/osen/index.html) などで,閲覧できる。



### ・測定局の種類

一般大気環境測定局

自動車排出ガス測定局

その他の測定局(気象局など)

# ·一般大気環境測定局:

住宅地などの一般的な生活空間における大気汚染の状況を把握するため設置された測定局。「一般局」と省略される。平成11年度には,全国の都道府県及び大気汚染防止法上の政令市に,1,721局設置されている。

### ・自動車排出ガス測定局:

道路周辺に配置された測定局。「自排局」と省略される。平成11年度には,全国の都道府県及び大気汚染防止法上の政令市により,415局設置されている。

# 自動車排出ガス測定局

沿道局:環境測定のための採気口(空気を採取するための管の入り口)が道路の沿道上に

ある。

車道局:採気口が道路の中央帯,車道,交通等などの上にある。車道局は,環境基準が適

用されない。

2001.11.26

環境共生学部・居住環境学専攻

講師・辻原万規彦

# ・その他の測定局:

気象局:大気環境を常時監視している測定局の中で,大気汚染物質の測定を行わず,気象項目の測定のみを行っている測定局。

立体局:高層タワーなどに設置され,高さごとに大気の状態を測定。

バックグラウンド局:比較的,大気汚染の影響が少ないと考えられる山間部などに設置され, 直接的な大気汚染の影響がない場所で,どの程度,大気汚染物質が検 出されるのかを調べるための測定を行う。

# ·環境基準適用局:

大気常時監視測定局は,測定局が設置されている地域が,環境基準が適用される地域内に設置されている「環境基準適用局」と,用途地域が工業専用地域,臨港地区の場合及び,通常,住民の居住が考えられない地域に設置されている「環境基準適用除外局」に分けられる。環境基準適用局では,その測定結果が,環境基準を達成しているかどうかの評価が行われる。

# 5. 大気汚染と気象

# 5.1 大気の安定度と汚染物質

大気汚染と気象条件の関係を考える場合,風の影響が最も大きい。風が弱いと,汚染物質を運び去ることができないし,その濃度を希釈することもできないからである。また,大気の安定度(第7回「地域の気候(その5・都市境界層)」の48ページを参照)も重要な要素である。大気が安定であると,汚染物質の垂直的な輸送と拡散を制限することになるからである。

静止大気中の微小空気塊を鉛直方向に微小距離だけ変位させた時,その変位が時間とともに小さくなる場合を「(静力学的に)安定」,変化しない場合を「中立」,大きくなる場合を「(静力学的に)不安定」という。

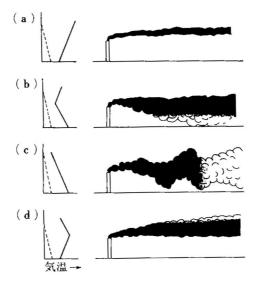



図 大気の安定度と煙流の振る舞い(出典:参考文献2))

2001.11.26

環境共生学部・居住環境学専攻

講師・辻原万規彦

# (a)扇型

気温の接地逆転層が形成され大気が安定な場合で,風の弱い夕方から早朝にかけての時間帯で典型的なものである。煙は水平方向にも垂直方向にも拡散しにくいので,風下に向かって流れる。

### (b) フュミゲーション(いぶし)型

接地逆転層が下層から不安定化した場合の例で,接地逆転層が日射によって解消に向かう午前中の 典型例である.上層は安定なために上方への拡散が抑制される一方で,下層は不安定化しているため に煙流は下方に降りてくる。

### (c)ループ型

日中は日射によって接地気層は不安定化した場合である。活発な対流活動によって,煙流は上下左右に大きく波打ちながら風下に輸送される。

# (d)屋根型

夕方に接地逆転層が形成されはじめた時間帯にみられるもので,煙は逆転層の上を上方に広がりながら風下に流れる。

このうち,汚染物質が上空で排出された場合に地表で高濃度が出現するのは(b)と(c)のときである。特に(b)の場合には,汚染物質はもっぱら下方に輸送されるために,著しい高濃度が発生する可能性がある。

### 5.2 海陸風

海岸地域に大都市や工業地域の多いわが国では,海陸風に伴う局地循環が大気汚染に深いかかわりをもつ。夜に吹く陸風のために,沿岸の都市や工場地帯から排出された大気汚染物質は海上に運ばれ,翌日の海風に伴って汚染大気がぶたたび陸上に進入してくる。

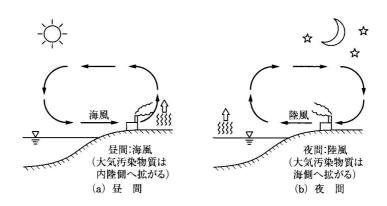



図 海陸風(出典:参考文献3))

水の比熱は陸地(土壌)のそれより大きいので,昼間は太陽放射により地表面温度(陸地)の方が 海面温度より高く,夜間は放射冷却により逆に海面温度の方が高い。これにより,昼間は海から陸へ

2001.11.26

環境共生学部・居住環境学専攻

講師・辻原万規彦

向かう風が吹き(海風),夜間は陸から海へ向かう風が吹く(陸風)。海風,陸風をまとめて海陸風という。なお,陸風一海風・海風一陸風に変化するときに無風状態となるが,それぞれ朝凪,夕凪という。

#### 6.大気中における汚染物質の挙動

#### 高濃度大気汚染

発生源の近傍で煙が吹きつける形で発生する「疾風型」の大気汚染 大気の安定が汚染物質の滞留原因となる「冬型」の大気汚染 海陸風などの局地循環が汚染物質を輸送し光化学反応が加わる「夏型」の大気汚染

### 6.1 疾風型の大気汚染

1960年代まで各地で頻発した大気汚染で,比較的風の強い日に高濃度が現れる傾向があったため,疾風汚染とよばれた。汚染物質としてはSOxやばい塵が中心であった。発生源の風下近傍で風の変化に対応して濃度が急激に上昇する。汚染範囲は比較的小さいが,その中心濃度は高い。

これは,風が強い場合の煙流は,上昇せずに風に向かっていき,その後,建造物によってきわめて 起伏に富む都市内部で,強風時には活発な乱流活動によってビルの風下で煙流の吹きおろしが起き, 煙流が希釈されないまま地表に到達することによる。

1970年代になると大発生源が高煙突に切憎わり,汚染物質の少ない燃料への転換や発生源の汚染物質除去対策も進んだため,この種の大気汚染はわが国では少なくなった。

# 6.2 冬型の大気汚染

冬李には夜間を中心に大気安定度の高い日が多く,大気汚染物質の拡散が弱まる。特に,放射冷却に伴う気温逆転層は強い安定層であるため,風も弱まり,自動車などの低煙源から排出された汚染物質が滞留し,広い範囲で高濃度が発生する。このような条件は,日本付近が移動性高気圧に覆われる際に生じる。

NOx, SPM, COなど,低煙源の寄与の大きい高濃度汚染の発生条件である大気安定度は,一般に冬李に大きくなるが,厳寒から早春にかけては風が強く,また低気圧が通りやすい。このため,この種の高濃度汚染は11~12月の初冬李に集中する。しかし,主たる発生源が自動車や小規模固定発生源であるためその数が膨大であり,個別的な対策では効果が期待できず,都市構造や交通体系の改善などの根本的な対策が望まれている。

# 6.3 夏型の大気汚染

夏季の大気汚染の中心はいわゆる光化学スモッグである。夏は一般に大気安定度が低いため、排出された汚染物質は速やかに拡散する。しかし、夏の特徴である太平洋高気圧、あるいは移動性高気圧などが覆った場合、風が弱く上空に沈降性の気温逆転が現れ、また都市上空には「都市ドーム」(第3回目「地域の気候(その1・都市気候)」の11ページの図を参照。)が形成される。これが汚染

2001.11.26

環境共生学部・居住環境学専攻 講師・辻原万規彦

物質の拡散を抑制する働きをして,夜の問に背の高い汚染気魂が成長し,太陽が昇ると,光化学反応によってOxなどの2次汚染物質が増加する。Oxが生成されるのに数時間を要するため,その濃度は10時ごろから上昇をはじめ,13~16時ごろにもっとも高くなる場合が多い。

都市域では自動車などの発生源が多く,汚染物質の排出が終日著しいが,排気ガス中のNOは,Oxの大部分を占める $O_3$ との反応性が高い。このため,都心部では全体的な汚染状況が悪化しているにもかかわらず,Ox濃度は比較的低い。しかしその気魂が海風などによって郊外へ運ばれると,そこは $O_3$ を消費するNOが少なく,したがって光化学反応に伴うOxが増加して,著しい高濃度が生じる。また,上空に滞留して反応の進んだ大気汚染物質が雲,務,雨滴などに吸収されると,いわゆる酸性雨となる。

- 7.参考文献(〔〕内は,熊本県立大学附属図書館所蔵情報)
- 1)『都市環境学事典』(吉野正敏・山下脩二編,朝倉書店,1998年10月,¥16,800,ISBN:4-254-18001-2)[参考2,518.8¦¦To72,0000215322],[開架2,518.8¦¦To72,0000233012]
- 2)『都市の風水土 都市環境学入門』(福岡義隆編著,朝倉書店,1995年4月,¥3,675, ISBN:4-254-16332-0)[開架2,519以F82,0000220148,0000221369,0000221370]
- 3)『大気圏の環境』(有田正光編著,東京電機大学出版局,2000年1月,¥2,940,ISBN:4-501-61760-8)[所蔵なし]
- 4) 『地球環境サイエンスシリーズ 酸性雨と大気汚染』(片岡正光・竹内浩士,三共出版, 1998年1月,¥1,575,ISBN:4-7827-0349-X)[開架2,519.3 に KA 83, 0000204992,0000204993,0000229229,0000252313]
- 5)『写真・絵画集成 日本の公害 5 都市を覆う』(宮本憲一監修,日本図書センター,1996年4月,5巻セットで¥59,850,ISBN:4-8205-7300-4)[開架2,519.21¦|N77;|5,0000176661]
- 6)『日本の大気汚染の歴史』(大気環境学会史料整理研究委員会編,ラティス,2000年7月,3 巻セットで¥18,900,ISBN:4-8444-2010-0) [第1巻:開架2,519.3¦|N77||1,0000244419,0000251162],[第2巻:開架2,519.3||N77||2,0000244420,0000251163],[第3巻:開架2,519.3||N77||3,0000244421,0000251164]
- 7) 『気候学・気象学辞典』(吉野正敏・浅井冨雄・河村武・設楽寛・新田尚・前島郁雄編著,二宮書店,1985年10月,¥12,800,ISBN:4-8176-0064-0)[参考2,451.033¦¦Ki22,0000236451]
- 8) 『新版 気象ハンドブック』(朝倉正・関口理郎・新田尚編著,朝倉書店,1995年11月, ¥31,500,ISBN:4-254-16111-5)[参考2,451.036¦¦Ki58,0000249283]

2001.11.26

環境共生学部・居住環境学専攻

講師・辻原万規彦

- 8.参考URL
- 1)環境省(http://www.env.go.jp/)
- 2)環境省大気汚染物質広域監視システム(そらまめ君)(http://w-soramame.nies.go.jp/)
- 3)講義資料のダウンロード (http://www.pu-kumamoto.ac.jp/ m-tsuji/kougi.html/chiiki.html/chiikikan.html)